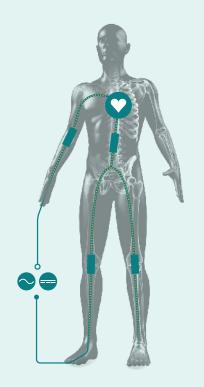


Handling electrical equipment safely

TrainingWork aid for in-house training



Every object connected to a source of electrical voltage (e.g. a socket, but also flat batteries) carries an electric current. If it flows through the human body, this can have life-threatening effects. Hazards arise both from the electricity itself and from consequential effects (such as defensive or shock-related reactions).

When does an electrical hazard exist (thresholds)?

- If the voltage at frequencies of up to 500 Hz is more than 25 V (AC) or 60 V (DC)
- If the current caused by the voltage is more than 3 mA (for AC voltage) or greater than 12 mA (for DC voltage)

The path of current through the body

- Hand/hand current path approx.
 1,000 Ω
- Hand/foot current path approx. $1,000 \Omega$
- Hand/feet current path approx. 750 Ω

Guide values for body resistance (R); simplified assumptions.

At a voltage (U) of 230 V and a resistance of 1,000 Ω , there is a current (I) of I=U/R= 230 V /1000 Ω = 230 mA.

The amount of current (I) that flows through the body depends on the voltage (U) and the resistance (R).

Amperage: measured in amperes (A) Voltage: measured in volts (V) Resistance: measured in ohms (Ω)

Which accidents can be caused by electricity?

Current flowing through the body

When electricity flows through a human body, this individual becomes part of the electrical circuit. The resulting risk depends on the following factors:

- Amperage
- Voltage
- Duration of the current flow
- Path of the current flow
- Resistance of the transition to the body
- Frequency of the current

The consequences of current flowing through the body can be a mild electric shock, burns or even death, depending on the parameters above.

Arc flash

An arc that occurs in the event of a fault is usually created due to unintentional contact between two electric conductors (short circuit). The current flowing between these conductors is called a short-circuit current. What are the possible consequences of this?

- Thermal effects burns, fires, pressure waves, melting of metal, etc.
- Flashes or light that dazzles the eyes
- Acoustic effects, e.g. acoustic trauma caused by noise

Secondary accident

This consequence of electrical accidents is often overlooked. Secondary accidents can occur when the electric current only flows through the human body for a short period of time.

This does not necessarily have to lead to current-related injuries, but defensive or shock-related reactions often result in accidents such as:

- Trips or falls someone is carrying out work on a ladder and falls as a result of the feeling of shock triggered by the impact of electricity
- Injuries, e.g. cuts, punctures, crushes, etc. caused by quickly retracting the hand from the danger area
- Scratches from sharp metal edges or similar
- Injuries due to falling parts

 objects near the work
 area that tip over or fall
 when someone stumbles
 into them

What should be done in the event of an electrical accident?

Interrupt the circuit

 Switch off the device, pull out the mains plug, unscrew it via the safety fuse or flip the fuse's toggle switch.

Separate injured people from the voltage source

• If this is not possible, injured people must be separated from the voltage source by a non-conductive object (e.g. a wooden broom handle). Injured people must not be touched directly, as this puts the lives of their rescuers at risk.

Perform first aid

 If possible, first aid should be provided by trained first aiders. If no first aider is available, those present are obliged to provide first aid without delay.

Immediate examination by an accident insurance doctor

 An accident insurance doctor must perform an examination to assess any injuries. Injured persons
must not
be touched
directly, as this
poses a danger
to the lives of
their rescuers.

How can you protect yourself?

Follow instructions given by electricians

To protect against electrical hazards, electricians' instructions must be complied with. They are aware of the risks and ensure safe working conditions.

Check that equipment in the proper condition Before use, you should check that electrical appliances or systems are in perfect condition:

- Is there visible damage to the electrical system or equipment?
- Is the supply line or plug device damaged? (tension relief effective, buckling protection at the cable inlet?)

Do not tamper with safety equipment

Only the intended switches may be used; safety equipment must not be meddled with. Protective covers and access points to electrical equipment or control cabinets must not be opened without permission.

Many hazards can be identified through regular visual inspections.

Do not carry out repairs yourself

Do not perform out any repairs or 'tinker' with electrical equipment. Repairs may only be carried out by qualified personnel who have been instructed accordingly.

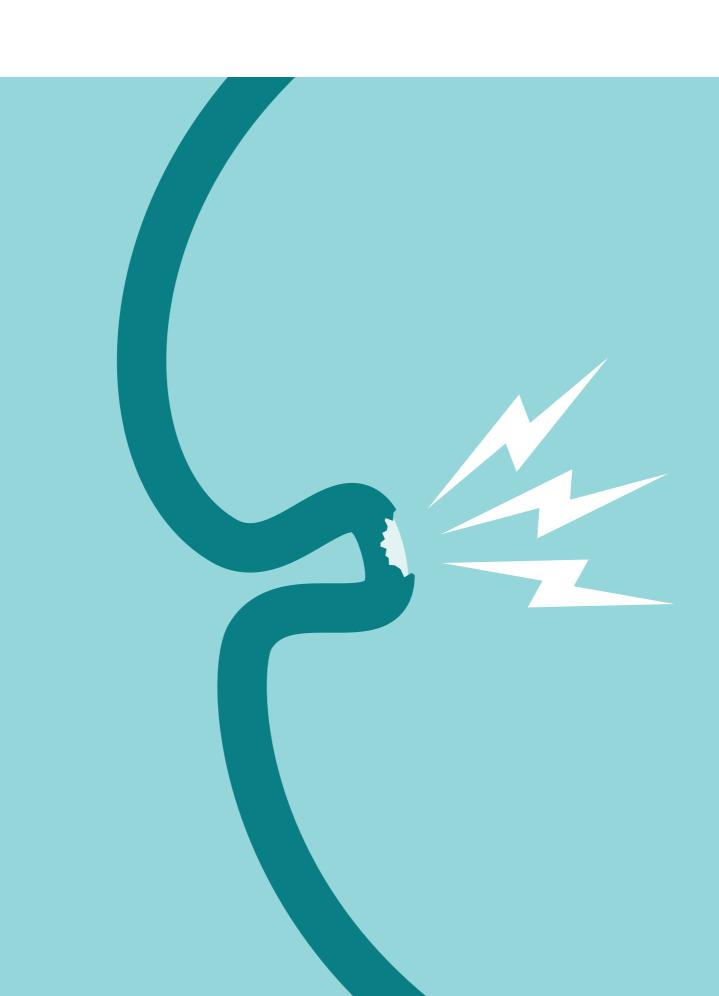
Report damage immediately

Damage or unusual occurrences regarding electrical equipment must be reported immediately to your supervisor or specialist staff. Defective devices must no longer be used and should be withdrawn from use.

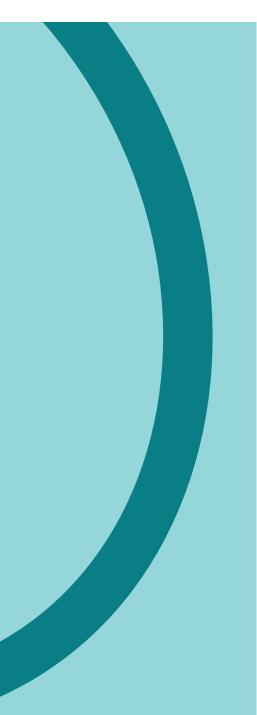
Heed the environmental conditions

When using portable devices, e.g. electrical hand tools, the environmental conditions at the site of use must be taken into account. You must ensure that the equipment's functionality is not impaired by the influence of moisture or chemical substances at any time. In potentially explosive atmospheres, you should make sure that the equipment is safe for use. Information on the intended operating conditions can be found in the operating manual.

What should you do in the event of a malfunction or accident?



In the event of a malfunction or an accident, switch off the voltage immediately, pull out the plug, unscrew the fuse or toggle the circuit breaker.



Use a nonconductive item
to separate
injured people
from the
voltage source!

In the event of an accident: interrupt the voltage source, e.g. switch off the equipment! If not possible: separate injured persons from the voltage source with a non-conductive object!

We're here for you **BG ETEM**

Our mission: safe, healthy work

BG ETEM is the statutory accident insurer for around four million people across more than 230,000 member companies.

We help to make work as safe as possible for everyone. In the event of an occupational accident or occupational illness, we are there for you and handle your medical treatment, rehabilitation and reintegration into the workplace.

More about us and our services:

(¬) www.bgetem.de

Order no. PU022-7e

Our resources on occupational health and safety can be accessed via (¬) medien.bgetem.de.

Image credits: BG ETEM and

Title illustration: Jörg Block for BG ETEM

Page 2: kunakorn/stock.adobe.com-402968103 and Illustration: ag visuell/stock.adobe.com-48268558 Page 5: Cables: Bacho Foto/stock.adobe.com-58511952,

Socket: iStock.com/uchar-174934687,

Emergency stop switch (left): micha_h/stock.adobe.com-27994405

4 · 0 · 3 - Last updated: 09/25 All rights reserved by the publisher Printed on paper from sustainable forests

BG ETEM

Berufsgenossenschaft **Energie Textil Elektro Medienerzeugnisse**

Gustav-Heinemann-Ufer 130 50968 Cologne, Germany Phone: +49 (0)221 3778-0

(¬) www.bgetem.de

Follow us:

